1 比特币价值 2019比特币股息ETF002585 比特币

4CHAN预测比特币

1.不要脸。

我不在乎别人说什么,必须不敏感,不玻璃心,钝感力强。

2.重视自己的感受。

一点都不在乎别人的评价、议论、看法,即使听了,也完全不当回事,别人对他的负面的看法,丝毫影响不了他。

3.胆儿大

查看更多

比特币丢失钱包如何开采比特币比特币测试网水龙头

按照步骤做一下试试。

1,检查自己的词汇库,是不是已经不会精准说话了。比如,形容厉害,只会说666,牛x,其他词汇一概不用。

2,检查一下自己思考的用词,是不是已经摒弃书面语了,如果是,逼迫自己获得书面语的思考能力,绝对避免用梗来思考。

3,前两点的问题如果很严重,通过读严肃文学,人物传记,古文,书面写作,词汇解析,同义词分析,来扩展词汇量,使得词汇量至少达到高中毕业优秀水平。

这三点非常重要,因为严谨的思考需要精准的符号,高超的表达需要优雅的用词。前者让你思考的基础扎实,歧义减少以获得明晰计划和博弈的基础,后者让你在社会化时成为兼容性更高的的上位者。

查看更多

比特币今天会涨吗0.00055295 比特币目前有多少比特币在流通

匿名团体比特币

下面几条建议是酒局中如何避免大醉的方法,原则上只要降低血液中酒精的浓度,或者延缓浓度的升高,就能减少对身体的伤害:

  • 1.在上酒桌之前10分钟就开始喝水:可以喝500ml左右的水或者饮料,让胃里充满液体,用它来稀释酒精。因为浓度越高的酒精吸收得越快,我们就假设是某种40度白酒,刚上桌的20分钟里大家要干几杯,20克酒精下肚,但因为胃里有500ml的水,所以这时酒精浓度只有4%,而对于胃来说,低于10%浓度的酒精吸收的速度就很慢。
  • 2.酒局开始后的几个小时内慢点喝:成年男子分解酒精的速度大约是1小时10克酒精。这个速度相当于40度白酒每小时可以分解六钱。酒局上1小时喝下的量大约是这个的2-10倍,于是超出的部分就积累在血液中等待处理,积累的浓度越高就越醉。所以碰杯的频率尽量均匀,“打圈”那种喝法会导致短时间内血液中酒精浓度快速增加,更容易醉倒。
  • 3.不停地喝水或者饮料:降低“打圈”方式喝酒时血液中的酒精浓度。吸收进血液的酒精如果有充分时间完全分解的话,有90%是在肝脏内处理的,还有10%是通过呼吸、排汗、排尿这些方式直接排出体外的。但如果你不停的喝水,就会有大量酒精来不及在肝脏里分解就由肾脏排出体外了。你可以大致按照1杯白酒对应4杯水的节奏喝。这样大量的喝水会让30%的酒精来不及分解就直接排出体外,你相当于少喝了很多。
查看更多

单独的比特币挖矿软件每次验证交易时都会释放新的比特币今天购买比特币

走路的时候,喜欢走在你的左边,那样距离你的心脏会近一些

小行星开采比特币拥有最多比特币的地址2014年比特币价格是多少

生成dump文件命令

1
jmap -dump:format=b,file=memory.hprof 1

区块链和比特币可以互换吗0.0001 比特币 为 奈拉巴西的比特币经纪人

60 比特币

不要提前焦虑,生活就是见招拆招,日落归山海,山海藏深意,回头看看

一个发人深省的真相
被迫同意=!同意

葛优:我原来说实话也比瞎话多,后来发现实话伤人,谁都不爱听,我也不爱听,居家过日子,犯不着肝胆相照,虚着点和气。

一个帮助您交易比特币的简单工具

女生口中的随便,并非真正的随便。 而是你把可供选择的选项告诉她,她随便选

“不自律的人生是一种怎么样的体验?” : “被命运反复羞辱,却毫无还手之力。

查看更多

瑞典最好的比特币赌场网站追踪比特币的应用程序1 块比特币

比特币 72K

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
package com.weimob.mp.decoration.boot.config;

import com.alibaba.druid.pool.DruidDataSource;
import io.micrometer.core.instrument.Gauge;
import io.micrometer.core.instrument.MeterRegistry;

import javax.sql.DataSource;
import java.sql.SQLException;
import java.util.List;
import java.util.Map;
import java.util.function.ToDoubleFunction;

public class DruidCollector {
private static final String LABEL_NAME = "pool";

private final Map<String, DataSource> dataSourceMap;

private final MeterRegistry registry;

DruidCollector(Map<String, DataSource> dataSourceMap, MeterRegistry registry) {
this.registry = registry;
this.dataSourceMap = dataSourceMap;
}

void register() throws SQLException{
this.dataSourceMap.forEach((key,dataSource) -> {

DruidDataSource druidDataSource = (DruidDataSource)dataSource;
// basic configurations
createGauge(key,druidDataSource, "druid_initial_size", "Initial size", (datasource) -> (double) druidDataSource.getInitialSize());
createGauge(key,druidDataSource, "druid_min_idle", "Min idle", datasource -> (double) druidDataSource.getMinIdle());
createGauge(key,druidDataSource, "druid_max_active", "Max active", datasource -> (double) druidDataSource.getMaxActive());

// connection pool core metrics
createGauge(key,druidDataSource, "druid_active_count", "Active count", datasource -> (double) druidDataSource.getActiveCount());
createGauge(key,druidDataSource, "druid_active_peak", "Active peak", datasource -> (double) druidDataSource.getActivePeak());
createGauge(key,druidDataSource, "druid_pooling_peak", "Pooling peak", datasource -> (double) druidDataSource.getPoolingPeak());
createGauge(key,druidDataSource, "druid_pooling_count", "Pooling count", datasource -> (double) druidDataSource.getPoolingCount());
createGauge(key,druidDataSource, "druid_wait_thread_count", "Wait thread count", datasource -> (double) druidDataSource.getWaitThreadCount());

// connection pool detail metrics
createGauge(key,druidDataSource, "druid_not_empty_wait_count", "Not empty wait count", datasource -> (double) druidDataSource.getNotEmptyWaitCount());
createGauge(key,druidDataSource, "druid_not_empty_wait_millis", "Not empty wait millis", datasource -> (double) druidDataSource.getNotEmptyWaitMillis());
createGauge(key,druidDataSource, "druid_not_empty_thread_count", "Not empty thread count", datasource -> (double) druidDataSource.getNotEmptyWaitThreadCount());

createGauge(key,druidDataSource, "druid_logic_connect_count", "Logic connect count", datasource -> (double) druidDataSource.getConnectCount());
createGauge(key,druidDataSource, "druid_logic_close_count", "Logic close count", datasource -> (double) druidDataSource.getCloseCount());
createGauge(key,druidDataSource, "druid_logic_connect_error_count", "Logic connect error count", datasource -> (double) druidDataSource.getConnectErrorCount());
createGauge(key,druidDataSource, "druid_physical_connect_count", "Physical connect count", datasource -> (double) druidDataSource.getCreateCount());
createGauge(key,druidDataSource, "druid_physical_close_count", "Physical close count", datasource -> (double) druidDataSource.getDestroyCount());
createGauge(key,druidDataSource, "druid_physical_connect_error_count", "Physical connect error count", datasource -> (double) druidDataSource.getCreateErrorCount());

// sql execution core metrics
createGauge(key,druidDataSource, "druid_error_count", "Error count", datasource -> (double) druidDataSource.getErrorCount());
createGauge(key,druidDataSource, "druid_execute_count", "Execute count", datasource -> (double) druidDataSource.getExecuteCount());
// transaction metrics
createGauge(key,druidDataSource, "druid_start_transaction_count", "Start transaction count", datasource -> (double) druidDataSource.getStartTransactionCount());
createGauge(key,druidDataSource, "druid_commit_count", "Commit count", datasource -> (double) druidDataSource.getCommitCount());
createGauge(key,druidDataSource, "druid_rollback_count", "Rollback count", datasource -> (double) druidDataSource.getRollbackCount());

// sql execution detail
createGauge(key,druidDataSource, "druid_prepared_statement_open_count", "Prepared statement open count", datasource -> (double) druidDataSource.getPreparedStatementCount());
createGauge(key,druidDataSource, "druid_prepared_statement_closed_count", "Prepared statement closed count", datasource -> (double) druidDataSource.getClosedPreparedStatementCount());
createGauge(key,druidDataSource, "druid_ps_cache_access_count", "PS cache access count", datasource -> (double) druidDataSource.getCachedPreparedStatementAccessCount());
createGauge(key,druidDataSource, "druid_ps_cache_hit_count", "PS cache hit count", datasource -> (double) druidDataSource.getCachedPreparedStatementHitCount());
createGauge(key,druidDataSource, "druid_ps_cache_miss_count", "PS cache miss count", datasource -> (double) druidDataSource.getCachedPreparedStatementMissCount());
// createGauge(key,druidDataSource, "druid_execute_query_count", "Execute query count", datasource -> (double) druidDataSource.getExecuteQueryCount());
// createGauge(key,druidDataSource, "druid_execute_update_count", "Execute update count", datasource -> (double) druidDataSource.getExecuteUpdateCount());
// createGauge(key,druidDataSource, "druid_execute_batch_count", "Execute batch count", datasource -> (double) druidDataSource.getExecuteBatchCount());

// none core metrics, some are static configurations
createGauge(key,druidDataSource, "druid_max_wait", "Max wait", datasource -> (double) druidDataSource.getMaxWait());
createGauge(key,druidDataSource, "druid_max_wait_thread_count", "Max wait thread count", datasource -> (double) druidDataSource.getMaxWaitThreadCount());
createGauge(key,druidDataSource, "druid_login_timeout", "Login timeout", datasource -> (double) druidDataSource.getLoginTimeout());
createGauge(key,druidDataSource, "druid_query_timeout", "Query timeout", datasource -> (double) druidDataSource.getQueryTimeout());
createGauge(key,druidDataSource, "druid_transaction_query_timeout", "Transaction query timeout", datasource -> (double) druidDataSource.getTransactionQueryTimeout());
});
}

private void createGauge(String key,DruidDataSource weakRef, String metric, String help, ToDoubleFunction<DruidDataSource> measure) {
Gauge.builder(metric, weakRef, measure)
.description(help)
.tag(LABEL_NAME, key)
.register(this.registry);
}
}

添加比特币矿池矿门

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package com.weimob.mp.decoration.boot.config;

import com.alibaba.druid.pool.DruidDataSource;
import io.micrometer.core.instrument.MeterRegistry;
import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.shardingjdbc.jdbc.core.datasource.ShardingDataSource;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
import org.springframework.context.annotation.Configuration;

import javax.sql.DataSource;
import java.sql.SQLException;

@Configuration
@ConditionalOnClass({DruidDataSource.class, MeterRegistry.class})
@Slf4j
public class DruidMetricsConfiguration {

private final MeterRegistry registry;

public DruidMetricsConfiguration(MeterRegistry registry) {
this.registry = registry;
}

@Autowired
public void bindMetricsRegistryToDruidDataSources(DataSource dataSource) throws SQLException {
DruidCollector druidCollector = new DruidCollector(dataSource.unwrap(ShardingDataSource.class).getDataSourceMap(), registry);
druidCollector.register();
log.info("finish register metrics to micrometer");
}
}


B计划比特币下一个比特币是什么时候你可以在哪里花费你的比特币

比特币骰子游戏

50 家投资比特币挖矿

丢失比特币

在日常项目开发和问题排查中,发现一些问题是因为数据库连接池配置不合理导致,这里以druid****连接池为例来阐述几个参数的重要性及如何避免踩坑,

虽然下面提到的都是druid的配置项,但多数连接池(不限于数据库)其实也都有类似的配置基本用法和场景均可借鉴。

0.01011751 比特币

1
2
3
4
5
6
7
8
9
10
maxActive=50(根据业务实际情况调整)
minIdle=5(根据业务实际情况调整)
initialSize=5 (根据业务实际情况调整)
maxWait=3000
validationQuery=SELECT 1
validationQueryTimeout=1000
testWhileIdle=true
testOnBorrow=false
timeBetweenEvictionRunsMillis=60000
minEvictableIdleTimeMillis=300000

查看更多

比特币投资比特币什么时候会跌1 个真实的比特币

查看更多

表现最佳的比特币ETF阿兹特克比特币比特币会失败吗

  1. when(…) thenReturn(…)会调用真实的方法,如果你不想调用真实的方法而是想要mock的话,就不要使用这个方法
  1. doReturn(…) when(…) 跟when(…) thenReturn(…)一样都是mock方法,但不会调用真实方法
查看更多
字段 含义